Do amoeba contribute to the environmental survival of Francisella tularensis?

Hennebique A^{1, 2}, Peyroux J², Boisset S^{1, 2}, Maurin M^{1, 2}

¹Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France. ²Université Grenoble Alpes, TheREx, TIMC-IMAG, CNRS, UMR5525, Grenoble, France.

CONTEXT - Francisella tularensis

- Bacteria responsible for **tularemia**, a potentially lethal disease Potential agent of bioterrorism
- \rightarrow Need to control the bacterial reservoirs
- > Main modes of human contamination: contact with animals (hares) ++) or arthropod bites (ticks)
- > However, contamination from aquatic environments also exist¹:
- Outbreaks linked to ingestion of contaminated water: Turkey,

- Suspicion of an aquatic reservoir of *F. tularensis*
- Potential mechanisms of F. tularensis survival in aquatic environment
- Long-term survival in water^{2,3}?
- Biofilms⁴?
- Mosquito larvae⁵?
- Amoebae⁶⁻⁸?

- Balkans, Norway
- Outbreaks linked to mosquito bites: Sweden, Finland
- Sporadic cases related to aquatic activities (fishing, swimming): multiple countries

Francisella tularensis is released in water from animals. The bacterium is able to survive in water (W), in mosquito larvae (L), in biofilms (B), or in cooperation with amoeba (A). Human can be contaminated from the aquatic reservoir either by drinking contaminated water (D), after a mosquito bite (M), or during swimming (S) and fishing (F) activities.

AIM

Evaluate if *F. tularensis* is able to survive in the aquatic environment inside amoebae and/or through interaction with amoebae

1st model: AMOEBA PLATE TEST

Aim: study interactions between amoebae and *F. tularensis* in agar plates

Method:

- amoebae (*Acanthamoeba polyphaga*) monolayer on an agar plate
- Spots of serial dilutions of the tested *Francisella* strain on the same plate
- 10 days follow-up of bacterial growth on the plate

2nd model: INFECTION

Aim: evaluate if F. tularensis is able to survive or even multiply **inside** amoebae

Method:

- Infection of amoebae with *F. tularensis*, MOI 10, 1h
- Removal of extracellular bacteria by washing and gentamicin
- At day 0 (D0), D1, D2, D5, and D7 postinfection: removal of supernatant, lysis of

3rd model: CO-CULTURE

Aim: evaluate if F. tularensis is able to survive or even multiply **in the presence** of amoebae

Method:

- Infection of amoebae with *F. tularensis*, MOI 10, 1h
 - No removal of extracellular bacteria
- At day 0 (D0), D2, D7, D12, D16: no removal of supernatant, lysis of amoebae, and numeration of total bacteria (i.e. intracellular

 \rightarrow Bacterial growth on the plate = interaction with amoeba \rightarrow No bacterial growth on the plate = no interaction with amoeba *Results:* A. polyphaga and F. tularensis Ft6 10⁶ bact 10⁷ bact MOI ~ 20 MOI ~ 200 10⁵ bact 10⁴ bact MOI ~ 0,2 MOI ~ 2 *Conclusion:*

amoebae, and numeration of intracellular bacteria by CFU counting

and extracellular bacteria) by CFU counting

Results:

Co-culture of A. polyphaga and F. tularensis Ft6

Interaction between *F. tularensis* and the amoeba A. polyphaga

amoebae and very short

intracellular survival time

presence of amoebae in contrast to death in the absence of amoebae

CONCLUSION and PROSPECTS

Amoebae likely enhance survival of *F. tularensis* in the aquatic environment

-Survival of *F. tularensis* in the aquatic environment is favored by interactions with amoebae, but not related to intra-amoebal replication of this bacterium

 \rightarrow Mechanisms of enhanced survival of *F. tularensis* in the presence of amoebae are being investigated...

REFERENCES

1. Maurin M and Gyuranecz M. Lancet Infect Dis. 2016 2. Gilbert SE and Rose LJ. Lett Appl Microbiol. 2012 3. Forsman M et al. FEMS Microbiol Ecol. 2000 4. Van Hoek ML. Virulence. 2013 5. Lundström Jo et al. Emerg Infect Dis. 2011 6. El-Etr SH et al. Appl Environ Microbiol. 2009 7. Buse HY et al. Acta Microbiol Immunol Hung. 2017 8. Abd H *et al.* Appl Environ Microbiol. 2003